Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results

Aldo Caporossi, MD, FRCS, Cosimo Mazzotta, MD, PhD, Anna Lucia Paradiso, MD, Stefano Balocchi, MD, PhD, Davide Marigaldi, MD, Tomaso Caporossi, MD

PURPOSE: To assess the clinical results of transepithelial collagen crosslinking (CXL) in patients 26 years and younger with progressive keratoconus suitable for epithelium-off (epi-off) CXL.

SETTING: Department of Ophthalmology, Siena University Hospital, Siena, Italy.

DESIGN: Case series.

METHODS: The study included 48 eyes (46 patients) treated by transepithelial (epithelium-on) CXL. The mean age was 22 years (range 11 to 28 years) (90 younger than 18 years, 16 between 19 years and 26 years). Preoperative and postoperative examinations included uncorrected (UDVA) and corrected (CDVA) visual acuities, simulated maximum keratometry (K), coma and spherical aberration, and corneal optical coherence tomography (OCT) parameters. The solution for transepithelial CXL (Retro-C) comprised riboflavin 0.1%, riboflavin 0.1%, tromethamine (Tris), and etyrenebis(hexamethylenemethacrylate). Phototherapeutic keratectomy was performed with the Caporossi Balocchi Mazzotta X Linker Vega at 3 mW/cm².

RESULTS: After 12 months of follow-up, the UDVA and CDVA gradually returned to baseline preoperative values. After 12 months of follow-up, the simulated maximum K value was normal at 24 months. Coma and spherical aberration showed no statistically significant change. Spherical aberration increased at 24 months. Photokeratometry showed a progressive, statistically significant decrease at 24 months. Fifty percent of pediatric patients were retreated with epi-off CXL due to significant deterioration of all parameters after 12 months of follow-up.

CONCLUSIONS: Functional results after transepithelial CXL showed keratometric instability, in particular in pediatric patients 18 years old and younger, there was also a functional regression in patients between 10 and 18 years and 26 years, but after 24 months of follow-up.

Financial Disclosure: No author has a financial or proprietary interest in any material or method mentioned.

J Cataract Refract Surg 2013; 39(4) © 2013 ASCRS and ESCR

Transepithelial corneal collagen crosslinking for progressive keratoconus in a pediatric age group

Abdelrahman G. Saliman, MD, FRCS, MRCS

PURPOSE: To evaluate the effectiveness and safety of transepithelial corneal collagen crosslinking (CXL) in children with keratoconus and the refractive changes induced by this treatment.

SETTING: Ophthalmology Department, Ain-Shams University Hospitals, Cairo, Egypt.

DESIGN: Comparative case series.

METHODS: Patients younger than 18 years with bilateral keratoconus had transepithelial CXL with the use of transepithelial riboflavin. The other eye was used as a control and was treated conservatively. The uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and corneal tomography at 12 months were the main outcome measures.

RESULTS: The mean patient age was 15.7 years ± 2.1 (SD). After transepithelial CXL, the improvement in the mean UDVA was statistically significant (from 0.95 ± 0.34 logMAR to 0.68 ± 0.45 logMAR) (P < 0.05). No eye lost lines of preoperative UDVA; 1 eye lost 1 line of preoperative CDVA. There was no improvement in the control group in UDVA or CDVA (P > 0.05). The mean simulated keratometry (K) decreased by a mean of 2.03 diopters (D), with mean flattening of the apical K by 2.20 D; both results were statistically significant (P < 0.05). In the control group, the simulated K increased by a mean of 0.59 D (P > 0.05), with mean steepening of the apical K by 2.9 D (P < 0.05). No significant changes occurred in the endothelial cell count in either group.

CONCLUSION: Preliminary results of transepithelial CXL in children with keratoconus were encouraging, with no evidence of progression of keratoconus over 12 months.

Financial Disclosure: The author has no financial or proprietary interest in any material or method mentioned.

J Cataract Refract Surg 2013; 39(4) © 2013 ASCRS and ESCR