Frequency and Risk Factors for Intraocular Pressure Elevation After Posterior Sub-Tenon Capsule Triamcinolone Acetonide Injection

Keichiro Iwao, MD, Masaru Inatani, MD, Takahiro Kawaji, MD, Takahisa Koga, MD, Yuki Mawatari, MD, and Hidenobu Tanhara, MD

Purpose: This study investigated the effects of posterior sub-Tenon capsule (PST) injection of triamcinolone acetonide (TA) on intraocular pressure (IOP) in the human eye.

Methods: The study included 115 patients who received PST injections of 40-mg TA to treat macular edema with diabetic retinopathy (n = 57), branch retinal vein occlusion (n = 35), central retinal vein occlusion (n = 13), or other disorders (n = 10). IOP measurements were performed on the day of injection, and 0.5, 1, 2, 3, 6, 9, and 12 months later.

Results: In 26 (22.6%) of the 115 eyes, an IOP of 24 mm Hg or higher was observed during the 12-month follow-up period after PST TA injection. IOP elevation significantly correlated with young age, but not with past history of diabetes mellitus or systemic hypertension, sex, or type of retinal disease with macular edema. In total, 23 eyes were treated with antiglaucoma medications to control elevated IOP (24 mm Hg or higher). External trabeculotomy was performed in 1 case where medications failed to correct elevated IOP.

Conclusions: PST TA injection is associated with high rates of steroid-induced IOP elevation in eyes with previously normal IOP. However, IOP elevation may be less common after PST injection than after intravitreal injection. Our findings indicate that IOP must be carefully monitored after PST TA injection.

Key Words: glaucoma, corticosteroid, trabeculotomy

Triamcinolone acetonide (TA) is increasingly used for the treatment of numerous macular disorders that are associated with diabetic retinopathy, central retinal vein occlusion, choroidal neovascularization, and uveitis. TA is injected into either the vitreous or the sub-Tenon capsule to confine the corticosteroid effects to the ocular tissues, while minimizing the side effects associated with systemic steroid therapy. However, intravitreal injections of TA are associated with increased risks of ocular complications, including vitreous hemorrhage, retinal detachment, and bacterial endophthalmitis, which can often result in serious visual loss. Nonetheless, many research groups, including our own, have shown that posterior sub-Tenon capsule (PST) injections can effectively reduce macular edema in cases of uveitis and diabetic macular edema without inducing serious ocular complications.

Intraocular pressure (IOP) elevation is a common side effect of corticosteroid therapy. Although the topical, intravitreal, and systemic corticosteroid administration routes have been reported to cause IOP elevation, the effects of PST injection remain unclear. A few case series of uveitis patients showing IOP elevation after PST injection have been reported previously. However, bearing in mind the large number of patients with macular edema, surprisingly little is known about the frequency, time course, duration, and risk factors of IOP elevation after PST injection. To address this deficit, we carried out a retrospective investigation into the predictive factors of IOP elevation following PST injection of TA.

PATIENTS AND METHODS

Our interventional case series included 115 consecutive eyes from patients with macular edema who underwent PST TA injection, after giving informed consent, at the Kumamoto University Hospital in Japan between June 2003 and January 2004. Patients with macular edema due to uveitis were excluded from the analysis, because treatment with additional corticosteroids and inflammation in the anterior chamber can both affect IOP. Eyes with an IOP of 22 mm Hg or higher were also excluded from the analysis. To avoid biases related to host factors, if both of a patient's eyes were treated with TA, only the eye that first received treatment was included in the analysis. The PST injections were performed using the previously described protocol, with minor modifications. After disinfection with...
povidone-iodine and topical anesthesia with xylocaine, the conjunctiva and sub-Tenon capsule in the inferotemporal quadrant were incised with scissors. A 25-gauge curved blunt cannula was inserted into the sub-Tenon space to allow the infusion of 40-mg TA (Kenacort; 40 mg/mL; Bristol Pharmaceutical, YK, Tokyo, Japan). At the end of the procedure, the wound was left unsutured and ofloxacin ointment (Tarivid ophthalmic ointment; Santen Pharmaceutical Co, Ltd, Osaka, Japan) was applied to the eye. Each patient was instructed to use 0.5% levofloxacin (Cravit ophthalmic solution; Santen Pharmaceutical Co, Ltd, Osaka, Japan) 4 times per day for 1 week. In addition to these examinations, optical coherence tomography (Humphrey model 2000; Carl Zeiss Meditec International, Germany) was used to measure the central retinal thickness. The IOP was monitored for at least 6 months after the TA injection.

Information on each subject was obtained from a review of their medical records. The IOP measurements were recorded on the day of injection, and 0.5, 1, 2, 3, 6, 9, and 12 months later. All data are presented as the mean (± the standard deviation; along with the range of values). Multiple regression analysis was used to evaluate the effects on IOP of age, sex, lens status (phakic or pseudophakic), vitreous state (vitreous or nonvitreous), systemic diseases, and the number of injections. A Wilcoxon signed-rank test was used to compare the rise in IOP after the first injection with those after subsequent injections. The Spearman rank correlation was used to analyze the relationship between IOP and the thickness of macular edema after the injection. A probability (P) value less than 0.05 was considered statistically significant.

RESULTS

The study population consisted of 115 eyes from a total of 74 males and 41 females, with a mean age of 62.2 (±12.6; range = 13 to 84) years. The most common retinal diseases accompanying macular edema were diabetic maculopathy (57 eyes; 49.6%), branch retinal vein occlusion (35 eyes; 30.4%), and central retinal vein occlusion (13 eyes; 11.3%). The other disorders present (10 eyes; 8.7%) included exudative age-related macular degeneration, idiopathic focal subretinal neovascularization, polypoidal choroidal vasculopathy, and idiopathic juxtafoveal retinal telangiectasis. The mean follow-up period was 394.9 (±145.3; range = 180 to 672) days.

The mean IOP before the TA injection was 13.1 (±2.8; range = 6 to 20) mm Hg, and the mean maximum IOP after the injection was 19.8 (±6.3; range = 9 to 42) mm Hg. Thus, the mean rise in IOP was 6.7 mm Hg. The IOPs recorded from 2 weeks to 9 months after the TA injection were significantly higher than those observed before the injection. The mean IOP showed a gradual increase after the injection, peaked at 2 months, and then decreased gradually until reaching a minimum at 12 months (Fig. 1). In addition, 26 (22.6%) of the 115 eyes showed an IOP of 24 mm Hg or higher 1.8 (±0.8) months after the TA injection. The numbers of eyes with an elevated IOP of 24 mm Hg or higher gradually increased from 2 weeks to 2 months after the TA injection (Table 1), and all such cases were established by 3 months after the injection.

Additional TA injections were performed in 48 (41.7%) of the 115 eyes, because of a recurrence of macular edema after the first injection. For each of the eyes treated with an additional TA injection, we calculated the peak IOP after the injection minus the IOP before the first injection (that is, the ΔIOP). The mean ΔIOP values were 4.1 (±3.4) mm Hg for the first injection, and 6.4 (±5.8) mm Hg for the second injection. There was a statistically significant difference between the ΔIOP values for the first and second injections (P < 0.01). Interestingly, when additional injections were performed within 6 months of the first, the ΔIOP values for the second injection were significantly higher than those for

FIGURE 1. The mean IOP at each time point after PST injection of TA. The IOPs at 2 weeks, and 1, 2, 3, 6, and 9 months, were significantly higher than those before the injection. *P < 0.05; Mann-Whitney U test.
the first \((P < 0.01)\). However, there was no statistically significant difference between the \(\Delta IOP\) values for first and second injections that were performed with more than a 6-month gap between them (Fig. 2).

To investigate the factors affecting IOP elevation after TA injection, multiple regression was used to analyze the relationships between the \(\Delta IOP\) values (defined as the peak IOP during the total time course minus the preinjection IOP) and the other items. The results demonstrated that age was significantly negatively correlated with \(\Delta IOP\). By contrast, there were no significant correlations between \(\Delta IOP\) and systemic associations of diabetic mellitus or hypertension, or sex (Table 2). In addition, there was no correlation between the \(\Delta IOP\) and the reduction in relative retinal thickness (RT) calculated using the following formula:

\[
RT_{\text{before the injection}} - RT_{\text{minimum value after the injection}} / RT_{\text{before the injection}}
\]

Of the 26 eyes that showed an IOP of 24 mm Hg or higher after the TA injection, 19 (73.1%) were administered antiglaucoma ophthalmic drops. The mean maximal number of drops administered during the period of IOP elevation was 1.5 \((\pm 0.7; \text{range = 1 to 3})\). Oral carbonic anhydrase inhibitors were used in 1 case, which subsequently needed surgical treatment, because the peak IOP reached 35 mm Hg and remained associated with glaucomatous visual field defects, despite treatment with antiglaucoma ophthalmic drops (timolol, latanoprost, and dorzolamide) and oral acetazolamide. External trabeculotomy was performed 10 months after the TA injection in this case, in an attempt to reduce the unresponsive IOP. During the follow-up period after surgical treatment, the IOP in this patient decreased to between 14 mm Hg and 16 mm Hg after treatment with 1 type of antiglaucoma ophthalmic drop (latanoprost).

With regard to TA-related side effects other than IOP elevation, 9 (15.0%) of the 60 phakic eyes showed progression of posterior subcapsular or cortical cataracts. Surgery was performed in 4 of these cases during the follow-up period. An additional complication that was observed in 1 eye (0.9%) after the TA injection was blepharoptosis. Bacterial endophthalmitis, progression of retinopathy, perforation of the eyeball, and orbital fat atrophy were not observed.

DISCUSSION

Although a PST injection of TA delivers a large amount of corticosteroid to the posterior segment of the eye via transscleral absorption, the side effects of this procedure have remained unclear. Our current data show the frequency, time course, duration, and risk factors for IOP elevation after PST TA injection. Several groups

![FIGURE 2. IOP elevation augmented by an additional injection of TA after a short time interval. The \(\Delta IOP\) was calculated for the first and second injections, respectively. When additional injections were performed within 6 months of the first, the \(\Delta IOPs\) for the second injection were significantly higher than those for the first injection. \(\ast P < 0.01\); Wilcoxon signed-rank test.](image-url)
TABLE 2. Risk Factors of IOP Elevation After PST Injections of 40 mg TA

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>t value (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-2.32724 (-0.186 to -0.015)</td>
<td>0.022</td>
</tr>
<tr>
<td>Sex</td>
<td>-1.41544 (-0.406 to 0.684)</td>
<td>0.160</td>
</tr>
<tr>
<td>Laterality of the eye</td>
<td>-0.33899 (-2.431 to 1.721)</td>
<td>0.735</td>
</tr>
<tr>
<td>Lens status (phakic or pseudophakic)</td>
<td>0.150151 (-2.448 to 2.849)</td>
<td>0.881</td>
</tr>
<tr>
<td>Vitreous state (vitreous or nonvitreous)</td>
<td>-0.35939 (-3.060 to 2.121)</td>
<td>0.720</td>
</tr>
<tr>
<td>General disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic mellitus</td>
<td>-1.88658 (-4.460 to 0.111)</td>
<td>0.062</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.54164 (-1.545 to 2.706)</td>
<td>0.589</td>
</tr>
<tr>
<td>No. injections</td>
<td>2.193439 (0.170 to 3.363)</td>
<td>0.030</td>
</tr>
</tbody>
</table>

Further analyses will therefore be needed to verify whether the IOP elevation depends upon the dosage of TA.

The multiple regression analysis showed that younger age was a significant predictive factor for IOP elevation. Younger patients are also reported to be at a higher risk of developing steroid-induced glaucoma through the use of corticosteroid eye-drops.32 Although it remains unclear why younger patients should experience steroid-induced ocular hypertension more frequently, it is possible that PST injection of TA might induce IOP elevation in younger patients via the same mechanism. In our current analysis, there were no correlations between the frequency of IOP elevation and any factors other than age. Patients with diabetes have been reported to experience a higher incidence of IOP elevation caused by corticosteroid therapy.33 By contrast, a recent randomized clinical trial demonstrated that diabetes mellitus was not a major risk factor for glaucoma.34,35 This supports the present finding of a correlation between TA-induced IOP elevation and diabetes mellitus.

With the exception of cases of IOP elevation, cataracts developed in 15% of the patients in the current study after the PST TA injection. The progression of cataracts was previously reported in 24.2% of patients after intravitreal injection,36 thereby demonstrating a higher incidence than that observed after PST injection. PST injection has previously been linked to complications such as mis-injection-related embolic occlusion of the central retinal artery,37-39 orbital abscesses,38 and cutaneous hypopigmentation.40 However, no such complications were encountered in the present study. Blepharoptosis, which was encountered in the present study, is a known complication of PST injection, because the local effects of triamcinolone are thought to be associated with wasting of the lid muscle, and weakening of the tendon, levator muscle, levator aponeurosis, and orbital septum.41 The intravitreal injection of TA is reportedly associated with bacterial endophthalmitis42-46 at a frequency of 0.87%.15 On the other hand, there have been no previous reports on endophthalmitis after PST injection. Because this technique does not penetrate the sclera tissue, the risk of endophthalmitis might be much lower for PST injection than for intravitreal injection. However, bacterial endophthalmitis is rare complication in the field of ophthalmic surgery, so future collaboration and pooling of data from other intervention studies will be useful to clarify the safety of PST injection of TA.

Despite the administration of antiglaucoma medication, prolonged IOP elevation was encountered in 1 eye. We therefore performed an external trabeculotomy to correct this uncontrollable elevated IOP. Several other groups have reported using filtering surgeries, such as trabeculotomy, on eyes with IOP elevation induced by TA.11,18,22,27,41 We previously demonstrated that external trabeculotomy was effective in 14 out of 14 eyes with steroid-induced glaucoma.42 It has been hypothesized that corticosteroids promote the abnormal accumulation.
of extracellular matrices in the trabecular meshwork, thereby leading to an increased resistance of aqueous outflow.14-16 Because trabeculotomy reduces the outflow resistance in the trabecular meshwork and the inner wall of Schlemm's canal, we believe that external trabeculotomy is the reasonable surgical choice for controlling elevated IOP in eyes with TA.

In conclusion, PST injection of TA caused an elevated IOP of 24 mm Hg or higher at a frequency of 22.6% within 3 months of the injection. Furthermore, in younger patients, an additional injection within 6 months of the first often caused a further increase in IOP. Our data suggest that IOP should be monitored for at least 3 months after PST TA injection, especially in younger patients or those who are given an additional injection within 6 months.

REFERENCES

