Nanosecond technology for flap creation

Stodulka P., Czech Republic
The aim of this presentation is to share the data of the first lasik series of eyes with flaps created by new Sirama (Schwind) nano / picosecond UV laser platform.
laser: solid state
wavelength: 355 nm (UV range)
pulse frequency: ≤ 300 kHz
pulse duration in picosecond range (10^{-12}s)
pulse energy ≤ 0,3µJ
Sirama (Schwind) picosecond laser platform

Sirama laser can be combined with different excimer lasers
Sirama (Schwind) picosecond laser flap features

- diameter 7 to 10mm (0.1mm steps)
- side cut angle 45° - 105°
- hinge width 2 to 5mm
- hinge position – 360° options
- flap position according to pupil detection
Cutting
22 eyes of 11 patients

1 eye Sirama, second eye LDV (Ziemer)

flap diameter 9,5mm

hinge at 12 o’clock position

Amaris 750s (Schwind) for ablation

myopia -1 to -5 D sf. eq.

BSCVA 0,9 to 1,2
UDVA – Sirama
DCVA – Sirama

![Graph showing DCVA results before and after surgery at 1 week and 1 month post-operation.](image-url)
Sph. Eq. – Sirama

PreOp

1W

1M
Flap boarder immediately postop.
High quality flap edge
Flap thickness

intended: 130µm

achieved: 127 ±6µm
Clear cornea 1st day postop.
Epithelial defects 1st day
Conclusion

- flap separation slightly more difficult
- flap quality excellent
- light sensitivity the first hours after surgery
- 10% of eyes epithelial defects day 1
- Sirama first results promising
Discussion - Sirama potential advantages

- very precise tissue separation
- less collateral tissue damage
- affordable price
- less maintenance cost
Discussion - Sirama limitations

- epithelial injury by UV light after the first series of surgeries

- The manufacturer has meanwhile found ways to avoid any UV light injuries of the epithelium.

- Currently the manufacturer is working on other applications than flap cutting and intrastromal corneal ablation.
Thank you for your attention.